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Thermal Conductivity of Small Nickel Particles
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The thermal conductivity of nanoscale nickel particles due to phonon heat
transfer is extrapolated from thin film results calculated using nonequilibrium
molecular dynamics (NEMD). The electronic contribution to the ther-
mal conductivity is deduced from the electrical conductivity using the
Wiedemann–Franz law. Based on the relaxation time approximation, the elec-
trical conductivity is calculated with the Kubo linear-response formalism. At
the average temperature of T = 300 K, which is lower than the Debye tem-
perature �D =450 K, the results show that in a particle size range of 1.408–
10.56 nm, the calculated thermal conductivity decreases almost linearly with
decreasing particle size, exhibiting a remarkable reduction compared with the
bulk value. The phonon mean free path is estimated, and the size effect on
the thermal conductivity is attributed to the reduction of the phonon mean
free path according to the kinetic theory.

KEY WORDS: nanoscale; nickel particles; nonequilibrium molecular dynamics
(NEMD); thermal conductivity.

1. INTRODUCTION

The thermodynamic properties of nanoparticles play an important role in
understanding the transition from the microscopic structure to macroscopic
structure of matter. Nickel nanoparticles have potential importance
in the physics and chemistry of transition metals [1]. Nickel parti-
cles are of special interest because of their practical applications in
catalysts, nanoporous media, ferromagnetism, and their superparamagnetic
behavior [2–4].
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Compared with the bulk material, nanoparticles usually contain more
voids and lower packing density, more defects and impurities and, in most
cases, boundary roughness and smaller grain sizes. While each of these
factors could reduce the thermal conductivity, their relative importance
differs. More voids and a lower packing density would lower the thermal
conductivity. However, calculations show that such changes only produce
a modest change in the thermal conductivity and are unlikely to explain
the observed drastic reduction [5]. Hence other factors, namely the finite
particle size, the boundary condition and the reduced grain size as well as
the defects and impurities, should be analyzed carefully to understand the
microscopic origin of the heat conduction mechanisms.

Thermal transport in metals is a function of the phonon heat trans-
port and the electron heat transport. In pure bulk metals, the phonon
heat transfer will be completely swamped by the much larger electron heat
transfer [6]. But in nanoscale metallic materials, the electronic contribu-
tion to the thermal conductance decreases dramatically [7] and the thermal
conductivity also decreases [8] due to the phonon heat transfer.

Numerical simulations can be used to predict the thermophysical
properties of materials at nanoscales that cannot be experimentally mea-
sured. Molecular dynamics (MD) is a valuable tool for studying the
atomic-scale properties of solids [9,10]. Classical MD methods simulate
only the interaction between atomic nuclei, which means that the heat
transfer due to the phonon-phonon interactions is taken into account. The
success of MD simulation depends upon the accuracy of the inter-particle
potential model used in the simulation. This is not a problem for insu-
lators or semiconductors in which the electronic heat transfer is negligi-
ble. Over the last two decades, several types of potential models, such as
tight-binding theory [11], pseudo-potential [12], empirical potential func-
tion [13], and embedded-atom method (EAM) [14] have been developed
to describe the inter-atomic interaction of metals. In transition and noble
metal systems, the EAM model, originally proposed by Daw and Baskes
in 1984 [14], has been widely used to describe the energetics of metallic
systems. Four different versions of the EAM model proposed by Johnson
[15], Mei et al. [16], Cai and Ye [17], and Pohlong and Ram [18] have since
been developed to employ different embedded functions, electron density
functions, and two-body interaction functions. Among them, the versions
of Johnson, Mei et al., and Cai and Ye show better agreement with the
data obtained from the experiments for the isobar heat capacity of Cu,
Ni, and Ag [19, 20]. Therefore, the version of Cai and Ye was selected for
computing the thermal conductivity due to phonon–phonon interactions
of nickel in the present study. The formulae and parameters of the EAM
version are the same as those presented in the paper of Cai and Ye [17].
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Thermal conductivity measurements are more difficult and inherently
less accurate than electrical resistivity measurements. Therefore, the
Wiedemann–Franz law is often used to convert electrical conductivity val-
ues into estimates of the thermal conductivity [6]. However, when the
metallic particle size is less than 100 nm, the fine particle electrical conduc-
tivity is also extremely difficult to measure. Therefore, at nanoscale sizes,
theoretical methods are used to estimate the electrical resistivity of thin
metallic films and small metallic particles [21–24].

This work analyzes the electrical conductivity of nanoparticles using
the Kubo linear-response formalism, with the Wiedemann–Franz law used
to relate these values to the electronic component of the particle thermal
conductivity. The lattice contribution to the thermal conductivity estimated
using the NEMD method and theoretical analysis is added to the elec-
tronic component to obtain the total thermal conductivity of the materials.

2. ELECTRICAL CONDUCTIVITY

An expression for the electrical conductivity within the Kubo linear-
response formalism was first obtained by specifically including the discrete
nature of the states in the system, as well as some coupling to a dissipa-
tive mechanism. In the independent-electron approximation, the Hamilto-
nian for an electron in the presence of a semiclassical electromagnetic field
characterized by the vector potential A(r, t) is [23]

H =
[

p̂2

2m∗ +V (r)

]
+

[ e

2m∗c
(p̂ ·A+A · p̂)

]
≡ [H0]+ [H1], (1)

where we treat H0 = p̂2/2m∗ +V (r) as the unperturbed Hamiltonian which
satisfies H0|i >= εi |i > and evaluate the effects of the perturbation H1 =
e(p̂ ·A+A · p̂)/2m∗c to the lowest order.

Within linear-response theory, the density matrix can be approximated
by

ρ̂ ≈ ρ̂(0) + ρ̂(1) (2)

where ρ̂(0) is the density matrix of the system described by H0 and the
quasiequilibrium ρ̂(1) is linear in the perturbation due to H1. In addition,
assuming that the electrons are coupled to some source of dissipation, e.g.,
electron–electron interactions, electron–phonon interactions, magnetic scat-
tering, etc., we introduce an overall relaxation time τ (γ =1/τ is the corre-
sponding relaxation rate). The equation of motion for the density matrix of
the electrons is
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∂ρ̂(t)

∂t
+ i[Ĥ (t), ρ̂(t)]=−γ [ρ̂(t)− ρ̂qe(t)], (3)

Here, ρ̂qe is the quasi-equilibrium density matrix given by (exp{β[Ĥ0 +
Ĥ1(t) − µ0]} + 1)−1 and µ0 is the chemical potential. According to the
linear-response theory, expanding the quasi-equilibrium density matrix to
the lowest order, we have

〈i|ρ̂qe|j〉=fiδij − fi −fj

εij

〈i|Ĥ1|j〉, (4)

where εij = εi − εj , ρ̂(0)|i〉 = fi |i〉, and fi = {exp[β(εi − µ0)] + 1}−1 is the
Fermi–Dirac occupation factor for that state. From Eq. (3), the off-diago-
nal components of the density matrix are of the form,

〈i|ρ̂(1)|j〉= fi −fj

εij

εij − iγ

εij −ω− iγ
〈i|Ĥ1|j〉, (5)

where |i〉 and |j〉 are eigenstates of H0.
The induced current j ind is obtained by T r{ρ̂ĵ}. In general, the

induced current is composed of two parts, one is a diamagnetic contri-
bution arising from the change in the current operator due to the vector
potential, and the other is a paramagnetic term from the off-diagonal ele-
ment in the density matrix. The electrical conductivity is calculated from
j ind =σ(ω)E(ω)=σ(ω)(iω/c)A(ω). Thus,

σ(ω)= ie2

m∗ω


N

�
+ 1

�m∗
∑
i �=j

fi −fj

εij

εij − iγ

εij −ω− iγ
×|〈i|p̂E |j〉|2


 , (6)

where 〈i|p̂E|j〉 is the matrix element of the momentum operator along the
applied field.

The particle geometry used to calculate the electrical conductivity is
shown in Fig. 1. Assuming a jellium model for the ions in the cube, we
select particle-in-a-box wave functions as reasonable states;

�i =
(

8
a3

)1/2

sin
lπx

a
sin

mπy

a
sin

nπz

a
, {l,m,n}=1,2,3, . . . (7)

εi =
–h2π2

2m∗

[
l2 +m2 +n2

a2

]
(8)
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Fig. 1. Physical model for metallic particles.

Although the states for a three-dimensional highly spherical particle
may be explicitly expressed in terms of spherical Bessel functions, in gen-
eral, it is very cumbersome to work with their matrix elements. These
would obviously be more appropriate to the experimentally occurring col-
lections of small roughly spherical particles; the energy and general behav-
ior of a cube and a sphere differ only in the order 1 because of the similar
geometry [23].

The real part of the electrical conductivity in Eq. (6) now becomes

Reσµµ(ω)= e2

(m∗)2�

∑
i �=j

fi −fj

εji

γ

(εij −ω)2 +γ 2
×|〈i|p̂µ|j〉|2, (9)

The diamagnetic term in this case is exactly canceled by part of
the paramagnetic term. This can be shown by invoking the well-known
Thomas–Reiche–Kuhn sum rule [25] which states that independent of the
choice of i,

2
m∗

∑
j

|pij |2
εij

=−1, (10)

where i and j denote all the quantum numbers of a system and the matrix
elements are summed over all states j . The matrix elements of the momen-
tum operator can next be evaluated between states |i〉 ≡ |k,m〉 and |j〉 ≡
|k′,m′〉. We now take for convenience the applied and local fields to lie in
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a direction x normal to one of the box faces, such that the momentum
operators along the x direction are

〈i|p̂x |j〉= (−i–h)
2
√

2
a

mm′

m2 −m′2 [1− (−1)m+m′
]δk,k′ , (11)

As a→∞, corresponding to a bulk free-electron metal, the matrix element
vanishes, reflecting the fact that a free electron cannot conserve momen-
tum and energy by absorbing a photon. For finite a the particle walls
break the translational invariance of free space. The initial and final states
in the electric dipole limit must differ in parity. The inter-sub-band cou-
pling given in Eq. (11) leads to a electrical conductivity along the x direc-
tion which is given by

σx(ω→0)

σ0
= (4nc +1)(nc −1)

4n2
c

− 48

π2�2n3
c

Re
nc∑

m=1

m2(n2
c −m2)×

{−v tan v, if m is even
v cot v, if m is odd

(12)

where � = γ /ε0 is the level broadening in units of the zero-point energy,
ε0 = –h2π2/2m∗a2 is the zero-point energy of confinement in a cube of
dimension a, nc = Int [kFa/π ], σ0 = n0e

2τ/m∗ is the Drude conductivity,
and v = (πm/2)(1− i�/m2)1/2. Equation (12) is obtained by first perform-
ing the integrals over k and k′, which leaves a double summation over n

and n′. The summation over n′ is evaluated exactly [23] by exploiting the
fact that the function cot(πx) has poles at x =n for n=0, ±1, ±2, . . . . As
the particle size grows, the electrical conductivity will be equal to the dc
Drude conductivity; the small metallic cube ceases to be metallic as nc =1.

We are interested in the electrical conductivity for large a(a �
0.18 nm), or equivalently for nc � 1, in which case the summation over n

in the second term in Eq. (12) is approximated by an integral using the
Euler–Maclaurin summation formula [26], which is given by

�=6
√

2βx

∫ 1

0
y2(1−y2)

[
β

t
+2e−2

√
2/xt

(
t sin(xt)+ β

t
cos(xt)

)]
dy

(13)

where t = [y2 + (y4 +β2)1/2]1/2, β = –h/εFτ = 2/kFl, and x = l/a with l the
electron mean free path.
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3. ELECTRONIC HEAT TRANSFER

For pure metals at room temperature, the mean free path between
electrons (le−e) and the mean free path between electrons and defects
(le−d) are much greater than the mean free path for electron–phonon
interactions (le−ph). From elementary kinetic theory [27–28] and the equiv-
alent thermal resistance schemes given in Ref. 8,

1
λe

= 1
λe−ph

(14)

In this equation, λe is the thermal conductivity associated with the con-
duction electrons in a material and λe−ph is the thermal conductivity due
to electron–phonon interactions.

In general, λe is deduced from the electrical conductivity through the
use of the Wiedemann–Franz law. The Wiedemann–Franz law is for mate-
rials in bulk form. However, some researchers [29–32] expect it is also
suitable for micro- and nano-scale metallic materials. This is because it is
only invalidated by inelastic electron scattering processes. Moreover, from
a transport point of view, these metallic particles differ from the bulk
materials primarily by the elastic electron and phonon scattering centers
associated with disorders in the particle structure. Since the thermal con-
ductivity of pure bulk samples is proportional to the electrical conductivity
of the same samples via the Wiedemann–Franz law, the reduced thermal
conductivity of small particles must also have the same proportionality
with the reduced electrical conductivity of the same particles. Therefore,

λp

λb
= σp

σb
. (15)

In small metallic particles, considering the influence of boundary scat-
tering and the particle size, the average relaxation time is given by [33]

1
τ

= 1
τb

+ v

R
(16)

where τb is the electron relaxation time of the bulk crystal, v is the elec-
tron velocity equal to the Fermi velocity, and R is the particle radius. For
pure nickel, τb is determined from the second order of the perturbation
theory in pseudo-potential and the hybridization potential [34].

4. PHONON HEAT TRANSFER

To our knowledge, no experimentally measured phonon thermal
conductivities for metals are available in the literature. Therefore, only
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theoretical methods can be used to evaluate the thermal conductivity due
to phonon heat transfer. For a pure metal, the influence of defects on the
phonon heat transfer resistance is negligible because the mean free path
between phonon–defect interactions (lph−d) is much higher than the pho-
non–phonon (lph−ph) and phonon–electron mean free paths (lph−e). From
elementary kinetic theory [27, 28] and the equivalent thermal resistance
schemes given in Ref. 8,

1
λph

= 1
λph−ph

+ 1
λph−e

(17)

Using elementary kinetic theory, we can get

λph−e = le−ph

lph−ph

nph

ne
λph−ph (18)

The electron velocity is taken equal to the Fermi velocity, ve = 2.04 ×
106m · s−1, and the phonon velocity is equal to the sound velocity vph =
5630 m · s−1 [35]. The volume specific heat and the phonon density are cal-
culated from the Debye model [36].

The thermal conductivity due to phonon–phonon interactions in a
thin nickel film is estimated using nonequilibrium molecular dynamics
(NEMD) with the embedded-atom model (EAM). The two hard walls
are maintained at Th = 350 K and Tl = 250 K; simulations are performed
at constant density, with a film thickness range of 1.408–10.56 nm [37].
The theoretical thermal conductivity perpendicular to the film due to
phonon-phonon interactions is obtained from the ballistic transport equa-
tion [38],

λ=3nkB

(
T

�D

)3

v2
∫ �D/T

0

x4ex

(ex −1)2
· 1

1
τb

+ v
dF

dx (19)

where n is the phonon density, v is the phonon velocity, �D is the Debye
temperature, τb is the bulk crystal phonon relaxation time, d is the film
thickness, and F is the correction factor due to the influence of boundary
scattering, which has the form [39],

F= 3
4(2/α −1)

(20)

where α is the phonon emissivity on the surface, 0 < α < 1, and 1 − α

denotes the energy loss due to elastic scattering and diffuse reflections on
the surface.
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For metallic particles, the thermal conductivity due to phonon–phonon
interactions can be deduced from the corresponding film value calculated
using the NEMD method. From Eqs. (16) and (19), assuming that the par-
ticle and the film have the same characteristic size and the same boundary
scattering characteristics, the thermal conductivities of the films and parti-
cles are related as

λp

λf
=

1
τb

+ v
dF

1
τb

+ v
RF

(21)

where λp is the particle thermal conductivity due to phonon heat trans-
fer, λf is the thermal conductivity perpendicular to the film due to pho-
non heat transfer, τb is the bulk crystal phonon relaxation time, v is the
phonon velocity, R is the particle radius, d is the film thickness, and F is
the correction factor defined in Eq. (20).

5. RESULTS AND DISCUSSION

Compared with other metals, nickel has a smaller electrical conductiv-
ity, so the electronic component of the thermal conductivity is also lower
[8]. At room temperature (T = 300 K), the thermal conductivity of bulk
nickel is λ= 91.0 W · m−1 · K−1 [33]. The parameters in Table I were used
to calculate the electronic contribution to the thermal conductivity of the
particles. Equations (12), (15), and (16) are used to calculate the electri-
cal conductivity in the nickel particles. The results in Fig. 2 show that the
electrical conductivity increases as the particle size increases; however, it
is less than the film value for the same characteristic size and boundary
conditions. As the particle size grows, the electrical conductivity will be
equal to the dc Drude conductivity, and as the particle size decreases to
π/kF(nc =1), the particle will cease to be metallic.

Figure 3 shows that the thermal conductivity calculated from the elec-
trical conductivity increases as the particle size increases; however, it is
less than the thermal conductivity perpendicular to the film with the same
characteristic size and boundary conditions. Thus, the particle size and

Table I. Basic Electron Parameters for Nickel at T = 300 K

n(m−3s) 18.26×1028

v(m · s−1) 2.04×106

τb 3.76×10−15
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Fig. 2. Electrical conductivity variation for various particle sizes.
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Fig. 3. Theoretical prediction of the electronic component of the
thermal conductivity for various particle sizes.

boundary scattering are the main factors influencing the electronic compo-
nent of the metallic particle thermal conductivity with the boundary scat-
tering being much more dominant in the particles.

Figure 4 shows the variation of the thermal conductivity due to
phonon heat transfer, phonon–phonon interactions, and phonon–electron
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Fig. 4. Thermal conductivity due to phonon heat transfer and
NEMD simulated results for various film thicknesses. The average
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interactions with the film thickness [37]. Figure 5 shows that the theoret-
ical thermal conductivity perpendicular to the film due to phonon heat
transfer given by Eq. (19) is close to the calculated results in Ref. 37 for
α =0.215. Equation (19) can then be used to predict the thermal conduc-
tivity due to phonon heat transfer as a function of the film thickness. A
relation between the bulk value of a parameter and the value obtained
from an MD simulation proposed by Ercolessi [40] and the elementary
kinetic theory is used to obtain the bulk thermal conductivity due to pho-
non heat transfer,

7.627 W ·m−1 ·K−1 <λph(b)<7.700 W ·m−1 ·K−1. (22)

From the result in Eq. (22), the ratio of the thermal conductivity due
to phonon heat transfer to the total thermal conductivity is about 8.5%.
These results are realistic, as nickel is a good electrical conductor. The
ratio would probably be less for other metals that have a larger electrical
conductivity.

From Eq. (21) and the results in Fig. 4, the particle thermal conduc-
tivity due to phonon heat transfer can be calculated as shown in Fig. 6.
Figure 6 shows that λph increases with increasing particle size, and it is
less than the thermal conductivity perpendicular to the film with the same
characteristic size and boundary conditions. At T = 300 K, from phonon
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gas kinetic theory [41], a possible bulk nickel phonon mean free path
(MFP) is estimated to be l = 1.199−1.210 nm; here l − a is derived and
the particle size can be taken as the effective phonon MFP in the small
particles, and it gives the relation λ ∝ a; and this is in good agreement



Thermal Conductivity of Small Nickel Particles 593

with calculated results for a particle size less than 6 nm as shown in Fig. 6.
This analysis has attributed the conductivity size effect to that the parti-
cle size is the same order of magnitude as the phonon MFP in nanoscale
small nickel particles.

From the results in Figs. 3 and 6, the thermal conductivity of small
nickel particles can be calculated as shown in Fig. 7. Compared with
the experimental value of the thermal conductivity of bulk nickel at T =
300 K, 91 W · m−1· K−1, the 1.408 to 10.56 nm small particle thermal con-
ductivity is about 2.5 to 10 times lower than that of bulk nickel, show-
ing remarkable boundary scattering effects, quantum size effects, and size
effects. Moreover, Fig. 7 shows that the total thermal conductivity of the
particle is less than the total thermal conductivity perpendicular to the
film with the same characteristic size due to the increased boundary scat-
tering in the particle and that the difference between the film and particle
total thermal conductivities decreases as the size increases. For very large
and very small sizes, the total thermal conductivities of the films and the
particles will be the same.

6. CONCLUSIONS

In metals, heat is mainly transferred by the diffusion of electrons,
but experimental thermal conductivity curves suggest that, for metals with
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Fig. 7. Total thermal conductivity variation for various particle
sizes.
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lower electrical conductivities, the phonon heat transfer cannot be ignored
[42]. In this paper, the thermal conductivity due to phonon heat transfer
in small particles has been extrapolated from thin film results calculated
using nonequilibrium molecular dynamics (NEMD) and the electronic
contribution to the thermal conductivity of the particle has been deduced
from the electrical conductivity through the use of the Wiedemann–Franz
law. The electrical conductivity of small nickel particles has been estimated
from the Kubo linear-response formalism with the relaxation time approx-
imation. We find that the thermal conductivity of nanoscale small nickel
particles has remarkable boundary scattering effects, quantum size effects,
and size effects, which considers electrons only at the Fermi level and at
a temperature lower than the Debye temperature. In a particle size range
of 1.408–10.56 nm, the small particle thermal conductivity is about 2.5–
10 times lower than that of bulk nickel at corresponding temperatures and
decreases almost linearly as the particle size is reduced. The particle ther-
mal conductivity is less than the film value for the same characteristic size
and boundary conditions with a size range of 1–11 nm. The phonon size
effect occurs because the effective phonon MFP is reduced when the parti-
cle is comparable to or even smaller than the phonon MFP in bulk nickel.
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13. Ş. Erkoç, B. Güneş, and P. Güneş, Int. J. Mod. Phys. C 11:1013 (2000).
14. M. S. Daw and M. I. Baskes, Phys. Rev. B 29:6443 (1984).
15. R. A. Johnson, Phys. Rev. B 37:3924 (1988).
16. J. Mei, J. W. Davenport, and G. W. Fernando, Phys. Rev. B 43:4653 (1991).
17. J. Cai and Y. Y. Ye, Phys. Rev. B 54:8398 (1996).
18. S. S. Pohlong and P. N. Ram, J. Mater. Res.13:1919 (1998).
19. B. Sadigh and G. Grimvall, Phys. Rev. B 54:15742 (1996).
20. J. Z. Wang, M. Chen, and Z. Y. Guo, Chin. Phys. Lett. 19:324 (2002).
21. H. E. Camblong and P. M. Levy, Phys. Rev. B 60:15782 (1999).
22. C. Blass, P. Weinberger, L. Szunyogh, P. M. Levy, and C. B. Sommers, Phys. Rev. B 60:492

(1999).
23. D. M. Wood and N. W. Ashcroft, Phys. Rev. B 25:6255 (1982).
24. X. G. Zhang and W. H. Butler, Phys. Rev. B 51:10085 (1995).
25. H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer,

Berlin, 1957).
26. C. M. Bender and S. A. Orzag, Advanced Mathematical Methods for Scientists and Engi-

neers (McGraw-Hill, New York, 1978).
27. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).
28. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Fort

Worth, Texas, 1976).
29. R. J. Anderson, J. Appl. Phys. 67:6914 (1990).
30. C. L. Tien, B. F. Armaly, and P. S. Jagannathan, in Thermal Conductivity (Plenum Press,

New York, 1969), pp. 13–19.
31. C. R. Tellier and A. J. Tosser, Size Effects of Thin Films (Elsevier, New York, 1982).
32. N. F. Mott and H. Jones, Theory of Properties of Metals and Alloys (Dover, New York,

1958).
33. U. Kreibig and C. V. Fragstein, Z. Phys. 224:307 (1969).
34. V. T. Shvets, S. V. Savenko, and S. V. Datsko, Condens. Matter Phys. 7:275 (2004).
35. E. T. Swartz and R. O. Pohl, Rev. Modern Phys. 61:605 (1989).
36. S. P. Yuan and P. X. Jiang, in Proc. 7thAsian Thermophys. Props. Conf. (Hefei and

Huangshan, Anhui, China, August 23–29, 2004).
37. S. P. Yuan and P. X. Jiang, Prog. Natural Sci. 15:922 (2005).
38. A. Majumdar, J. Heat Transfer ASME 115:7 (1993).
39. G. Chen and C. L. Tien, AIAA J. Thermophys. Heat Transfer 7:311 (1993).
40. F. Ercolessi, A Molecular Dynamics Primer (International School for Advanced Studies

(SISSA-ISAS), Trieste, Italy, Spring College in Computational Physics, ICTP, 1997).
41. J. M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960).
42. Y. S. Touloukian, Thermophysical Properties of Matter, Vol.1: Thermal Conductivity of

Metallic Materials and Alloys (Plenum Press, New York, 1970).


